Learning with CyberPLAYce, a Cyber-Physical Learning Environment for Elementary Students Promoting Computational Expression

Abstract
CyberPLAYce is our novel, interactive-computational construction kit for elementary school children and their teachers. CyberPLAYce bridges the physical and digital worlds, allowing young students to bring their ideas, stories and class subjects to life through the construction of cyber-physical environments. The CyberPLAYce construction kit is comprised of hand-sized, magnetic modules integrating a variety of electronic components, and rectangular panels, nearly two-feet measured diagonally, that receive the modules and serve as physical building blocks for constructing cyber-physical environments imagined by children. Through play, children become comfortable with the working modules and panels; subsequently, they are provided matching non-electronic module cards allowing them to quickly compose pattern sequences to map ideas, stories and class content. Additionally, students are provided action and story cards to spark their imagination. CyberPLAYce merges play and learning in the physical world while transitioning students from consumers of virtual and digital-centric technologies into technological innovators and cyber-playful storytellers.

Author Keywords
Computer Support Tools; Childhood Education; Interactive Environments; Architecture; User-Centered Design, Tangible Computing; Prototyping.

ACM Classification Keywords
H.5.2 [Information Interfaces & Presentation]: User Interfaces—prototyping, user-centered design; J.5 [Computer Applications]: Arts and Humanities—architecture; K.3.1 [Computers and Education]: Computer Uses in Education—collaborative learning.

Acknowledgements
The authors thank the Clemson University Institute for Intelligent Materials, Systems & Environments (CU-iMSE) for supporting this work.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s). Copyright is held by the author/owner(s).
CHI 2014, April 26–May 1, 2014, Toronto, Ontario, Canada.
ACM 978-1-4503-2474-8/14/04.
http://dx.doi.org/10.1145/2559206.2579478